
Heterogeneous CAF-based Load Balancing
on Intel Xeon Phi

Valeria Cardellini1, Alessandro Fanfarillo12, Salvatore Filippone3

1University of Rome Tor Vergata, Rome, Italy

2National Center for Atmospheric Research, Boulder, CO, USA

3Cranfield University, Cranfield, UK

May 23rd, 2016

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 1 / 26



Introduction

Monte Carlo method for pricing Asian options (embarrassingly parallel
algorithm).

Original code taken from Parallel programming and optimization with Intel
Xeon Phi coprocessors*.

Original code assumed correctly optimized for Intel Xeon Phi architecture.

Xeon Phis and CPUs used in symmetric mode (each device considered as
a compute node).

Approach presented by Colfax based on Master-Slave paradigm using MPI
two-sided functions.

We investigate the potential of PGAS languages for dynamic load
balancing problems on heterogeneous nodes.

Proof of concept for dynamic load balancing on a single
heterogeneous node using a PGAS language.

* Colfax International (http://www.colfax-intl.com/)

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 2 / 26



Asian Option Pricing

Options are contracts which allow one party to buy or sell, on some future
date, an asset (e.g., a stock). “strike price” agreed upon the signing of
contract.

Asian options payoff is calculated based on the mean price of the asset,
sampled at prearranged instances.

To make profit, the seller of the option must set a price that offsets the
anticipated risks associated with the price fluctuations.

For risk analysis of Asian options, multiple stochastic histories of the asset
price are simulated based on the available information.

Our task is to price N options, where for each option we have different
sets of parameters such as starting price, volatility, time averaging interval,
etc. For each option, we simulate P random paths and perform statistical
analysis using these simulations.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 3 / 26



Dynamic Load Balancing based on MPI two-sided

Copyright Colfax International

The boss is implemented by one thread of the CPU.

The boss thread blocks on a MPI Recv function in an infinite loop.

Each worker asks for one option at time.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 4 / 26



Simulations On Each Device (Multi-threaded)

Single option composed by P random simulations.

Each simulation can be executed by a single OpenMP thread.

Each thread applies vectorization techniques to speedup the computation.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 5 / 26



PGAS-based Dynamic Load Balancing

Issues with MPI-based dynamic load balancing:

the boss thread is able to satisfy only one request at time;

low-level details involved in the algorithm;

getting one option at time requires a lot of communication.

Partitioned Global Address Space (PGAS) languages may be a good
alternative:

allow to access remote memory directly (no need for boss thread);

allow to write more complex and portable algorithms.

In this work we used Coarray Fortran (CAF) as PGAS language.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 6 / 26



PGAS Languages

The PGAS model assumes a global memory address space that is logically
partitioned and a portion of it is local to each process or thread.

It means that a process can directly access a memory portion owned by
another process.

The model attempts to combine the advantages of a SPMD programming
style for distributed memory systems (as employed by MPI) with the data
referencing semantics of shared memory systems.

Fortran 2008/2015 (coarrays)

UPC (upc.gwu.edu)

Titanium (titanium.cs.berkeley.edu)

Chapel (Cray)

X10 (IBM)

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 7 / 26



Compilers Supporting Coarray Fortran

Cray Compiler (Gold standard - Commercial)

Intel Compiler (Commercial)

GNU Fortran (Free - using OpenCoarrays)

Rice Compiler (Free - Rice University)

OpenUH (Free - University of Houston)

G95 (coarray support not totally free - Not up to date)

GFortran uses an external library to support coarrays (since GCC 5.1).

Each coarray operation is translated in a function invocation (ABI).

The OpenCoarrays library implements this ABI using several transport
layers (since August 2014).

Currently, the most complete and stable implementation is based on
MPI-3.1 using passive one-sided communication functions.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 8 / 26



Coarray example

real , dimension (10), codimension [*] :: a, x, y

integer :: num_img , me , old_counter , increment

integer(atomic_int_kind) :: counter [*]

num_img = num_images ()

me = this_image ()

counter = 0; increment = me

x(2) = x(3)[7] ! get value from image 7

x(6)[4] = x(1) ! put value on image 4

x(:)[2] = y(:) ! put array on image 2

sync all

call atomic_fetch_add(counter [1],increment ,old_counter)

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 9 / 26



CAF-Based Dynamic Load Balancing - The Idea

We span one image on each device, Image 1 (on CPU 0) keeps the
counter of computed options.

Each image performs an ATOMIC FETCH ADD on the atomic counter on
Image 1.

This one-sided approach (in theory) liberates CPU0 from using one thread
for communication and allows the worker images to pick more than one
option at time directly.

Issues:

1 The ATOMIC FETCH ADD intrinsic is supported by GFortran +
OpenCoarrays but not yet by the Intel compiler.

2 Taking more than one option at time has an impact on performance.

3 Technical limitations due to MPI asynchronous progress.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 10 / 26



OpenCoarrays

OpenCoarrays is composed by three parts:

Compiler wrapper: aims to support CAF even on compilers that
provide limited or no support for CAF.

Run-time library: supports compiler communication and
synchronization requests by invoking a lower-level communication
library (MPI by default).

Executable file launcher: passes execution to the chosen
communication library’s parallel program launcher (mpirun by
default).

In this work we used the compiler wrapper in order to use the CAF
features provided by OpenCoarrays through the Intel compiler (needed by
Xeon Phis).

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 11 / 26



Multiple Options per Communication

Taking more than one option at time reduces the communication penalty
(due to latency) and should improve the performance, but it poses new
questions:

1 each device should keep the options queued or run them in parallel?

2 how many options should be taken by each device?

This questions can be answered by applying well known principles related
to scheduling problems.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 12 / 26



To Queue or Not to Queue? (1)

Multiple Options (MO) Multi-threading (MT)

MO runs several options in parallel (OpenMP).

MT runs several simulations in parallel belonging to one option.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 13 / 26



To Queue or Not to Queue? (2)

Throughput on CPU and Xeon Phi using the MO approach

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4
4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0

0

T
h
ro

u
g
h

p
u

t 
(o

p
ti
o
n
s
/s

e
c
)

Number of options

8 threads

16 threads
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

4
2

0

4
4

0

4
6

0

4
8

0

5
0

0

T
h
ro

u
g
h

p
u

t 
(o

p
ti
o
n
s
/s

e
c
)

Number of options

240 threads

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

1.2e+10

CPU_8 MIC_240 Cumulative

T
h
ro

u
g
h
p
u
t 
(R

a
n
d
o
m

 v
a
lu

e
s
/s

e
c
)

MT
MO

MO reaches max throughput when all

threads are used.

MT reaches max throughput with a single

option.

MO has higher throughput than MT.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 14 / 26



To Queue or Not to Queue? (3)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 8 16 32

N
o
rm

a
liz

e
d
 t
im

e

Number of options on CPU

communication

idle

With an MO approach, each Xeon Phi needs 240 options in order to reach
its max throughput.

This has a huge impact on the scheduling granularity.

Because the MT approach provides max throughput event with a single
option we decided to queue.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 15 / 26



How Many Options per Device?

This is a well known scheduling problem: makespan minimization using
heterogeneous devices without preemption (NP-Hard).

In order to simplify the problem we try to simulate homogeneity among
the heterogeneous devices: all devices take the same time to complete
a different amount of work.

Assuming a MT approach on all devices, it is preferrable to keep the
number of options on CPUs between 2 and 3.

Xeon Phis can “adapt” by checking how much time is required by a CPU
to compute a certain amount of options.

The time spent for computing a fixed amount of options and the number
of options currently analyzed can be stored in coarray variables.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 16 / 26



Learning Phase

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 17 / 26



Learning Phase

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 18 / 26



Experimental Platform

Tests run on Galileo, Tier 1 system operated by Cineca: the Italian
supercomputing consortium.

Each node equipped with two 8-core Intel Haswell E5-2630 v3 @ 2.40 GHz.

About half nodes are also equipped with two Intel Xeon Phi 7120p.

Code compiled with the Intel Fortran Compiler 15.0.2 and IntelMPI-5.0.2.

Coarray code based on OpenCoarrays-1.0.0, compiled with the Intel
Compiler through the compiler wrapper module.

Note: The code is assumed to be optimized for the Intel Xeon and Xeon
Phi architectures (Colfax International).

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 19 / 26



MPI vs. CAF Dynamic Load Balancing

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

shm:TMI TMI shm:TCP TCP

T
h

ro
u

g
h

p
u

t 
(r

a
n

d
o

m
 v

a
lu

e
s
/s

e
c
)

Intel MPI Fabrics

MPI
CAF

CAF_t

The MPI implementation capabilities and the network fabric are critical
factors.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 20 / 26



MT Hybrid approach

How about using MO only on one CPU (CPU1) and MT on the remaining
devices?

Reduces communication costs and has acceptable impact on schedule
granularity (it forces 8 options on CPU1).

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

shm:TMI TMI shm:TCP TCP

T
h
ro

u
g
h
p
u
t 
(r

a
n
d
o
m

 v
a
lu

e
s
/s

e
c
)

Intel MPI Fabrics

MPI
CAF
MTH

Cumul.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 21 / 26



Conclusions

The ease of programming provided by coarrays and their one-sided
semantics allowed us to focus more on the algorithm design rather
than its implementation (no low level details).

We were able to manage heterogeneous situations, where two
different versions of the same code run, at the same time, on the hw
more suitable for the performance needs.

Although the same results can be obtained by using MPI one-sided
routines, coarrays make easier to program more complex parallel
algorithms.

The one-sided support provided by Intel MPI is strongly related with
the “network” fabric employed.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 22 / 26



Thanks

Thanks

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 23 / 26



MPI Asynchronous Progress

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 24 / 26



MPI One-Sided Progress

One-sided functions exposed by MPI-3.0, are supposed to provide better
performance than the usual two-sided approach by overlapping
communication and computation.

Theoretically, the program running on the remote process does not need to
call any routine to match the one-sided operations invoked by the source
process.

In practice, the matching between MPI features and the underlying
network capabilities is not perfect and, even if the NIC allows to overlap
communication with computation, the MPI implementation may not be
able to progress independently.

MPI progress is guaranteed when the application invokes some MPI
routines.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 25 / 26



Progress Approaches

With the current available high-performance networks, there are essentially
three strategies for making progress: manual progress, thread-based
progress, and communication offload.

Manual progress is performed by the programmer by manually
invoking MPI routines during the program execution (adopted by
OpenCoarrays).

Thread-based progress requires a thread-safe MPI implementation; it
uses an helper thread that continuously invokes the MPI library.

Communication offload delegates the MPI progress to hardware
components; although this solution allows independent progress, it
may become a bottleneck because of the lower performance of the
embedded processors compared to regular CPUs.

(fanfarillo@ing.uniroma2.it) AsHES16 May 23rd, 2016 26 / 26


	Extra Slides

